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Abstract—We present a scalable circuit that performs multi-
channel, all-optical wavelength conversion employing semicon-
ductor optical amplifiers (SOAs) and a densely integrated TriPleX
photonic chip. The TriPleX device performs chirp filtering and
signal polarity inversion with on-chip signal processing. The chip
includes a total number of 40 arrays of Si N –SiO microring
resonators, delay interferometers and heating elements. The total
footprint of each array is 2.19 mm and the power consumption
per integrated heater is below 80 mW. We have interconnected
the TriPleX chip with SOAs and we demonstrate experimentally
4 40 Gb/s, parallel and wavelength tunable wavelength conver-
sion with power penalties of less than 3 dB.

Index Terms—Microring resonators, optical signal processing,
photonic integration, semiconductor optical amplifiers (SOAs),
wavelength converters (WCs).

I. INTRODUCTION

W AVELENGTH DATA ROUTING using compact, low-
cost, and power-efficient integrated photonics is consid-

ered a promising solution for future ultrafast, high-capacity core
networks. In this context, academic and industrial R&D groups
have focused their efforts on the development of highly inte-
grated photonic components that perform routing functionalities
[1]–[3], buffering [4], wavelength conversion [5]–[7] switching
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[8], [9], and contention resolution [10]–[12] in the optical do-
main. The development of ultrahigh capacity routing platforms
based on these components requires photonic integration tech-
nologies that can provide dense parallel integration to support
wavelength division multiplexing (WDM). In addition to large
integration density, these components should feature low loss
and low power consumption and should be realizedwith cost-ef-
fective fabrication techniques.
One of the key components in photonic routing architectures

is the optical wavelength converter (WC). The realization
of truly compact and energy efficient terabits per second
switching fabrics using scalable all-optical wavelength con-
verters (AOWCs) remains in the top priority of research on
broadband photonic routing systems. As such, research ac-
tivities have been focused on the development of chip-scale,
arrayed, WDMWCs using either hybrid or monolithic photonic
integration. In this context, the European project IST-MUFINS
has demonstrated a quadruple array of 40 Gb/s AOWCs on
a chip size of 15 mm 58 mm, employing silica-on-silicon
technology [13]. Recently, other researchers have presented
monolithic tunable optical router, a 61.6 mm monolithic InP
chip that hosts eight parallel AOWCs [14]. Both approaches
have implemented the AOWCs with semiconductor optical
amplifier (SOA) Mach–Zehnder interferometers that employ
two active elements (SOAs) per AOWC. Simpler AOWCs
with reduced feature size can be achieved with chirp-filtering
technique that can operate at ultrahigh bit rates ( Gb/s)
employing only a single active component (a nonlinear SOA)
followed by an optical bandpass filter (OBF) [15]. The scheme
has originally been demonstrated with bulk OBFs; however,
the appearance of microring resonators (MRRs) has enabled
the implementation of microring-assisted AOWCs that can
guarantee compactness and graceful scaling to WDM architec-
tures. MRR-assisted AOWCs based on silicon-on-insulator can
accommodate high-speed data rates due to the high index con-
trast, the potential for ultrasmall bends and the corresponding
short round-trip times that are comparable to the ultrashort
pulsewidths used at Gb/s bit rates [17]. However, for bit
rates up to 40 Gb/s where the pulses are in the order of tens of
picoseconds, medium-index contrast material such as TriPleX
is most suitable due to lower waveguide and fiber-coupling loss
[18].
Recently, the first report of this scheme employed a single

ring resonator and a bulk delay interferometer (DI), comprising
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Fig. 1. Concept of the 4 40 Gb/s AOWC.

polarization controllers, beam splitters, and polarization-main-
taining (PM) fiber [16]. In this single-channel 40 Gb/s
proof-of-principle experiment, two erbium-doped fiber ampli-
fiers (EDFAs) were employed within the WC due to the use of
discrete components; one EDFA to compensate fiber-to-chip
and chip-to-fiber coupling losses of the discrete reconfigurable
optical add-drop multiplexer and one for postamplification
and compensation of the losses of the cascaded bulk DI. The
use of the two EDFAs per WC dominated the overall size and
power consumption of the scheme limiting the scalability of
a WDM demonstrator. In addition, the power consumption
of each integrated heater element was 480 mW, raising
thermal management and thermal crosstalk issues in the case
of dense integration of MRR arrays. In order to develop a
compact and low-loss multichannel routing system based on
the medium-index contrast TriPleX platform, it was necessary
to integrate both the MRR and DI components on the same
photonic chip. In addition, further reduction of the power
consumed by the heater elements would be required to relax
thermal management issues and enable a more dense integra-
tion level.
In this paper, we demonstrate the first multichannel wave-

length conversion TriPleX platform that integrates arrays of
second-order MRRs and DIs on the same photonic chip. Due
to the on-chip interconnection of the MRRs with the DIs, no
in-line optical amplification is required restricting the total size
of the scheme to 87.5 mm . Both MRRs and DIs can be inde-
pendently tuned by heater elements each one consuming only
80 mW of electrical power. We demonstrate error-free, 4 40
Gb/s wavelength tunable, all-optical wavelength conversion
with dB power penalty.

II. PRINCIPLE OF OPERATION

Fig. 1 shows the 4 40 Gb/s AOWC scheme. In this con-
cept, four external SOAs are interconnected with a TriPleX in-
tegrated circuit that features four independent line structures.
Each of them comprises a second-order ring resonator followed
by a DI. Data streams enter the SOAs together with continuous
wave (CW) light to which wavelength conversion has to be per-
formed. Due to the finite recovery time of the SOAs, the wave-
length converted signals suffer from distortion. SOA speed up

Fig. 2. (a) Box-shaped TriPleX waveguide. (b) Mode Profile. (c) Fabricated
device. (d) Mask of the TriPleX chip.

is accomplished by using the TriPleX chip. First, the signals
pass through a second-order MRR that performs chirp-filtering
and effective recovery suppression. This can be achieved by de-
tuning the response of each MRR slightly off the CW wave-
length peaks using the integrated heating elements. In the case of
blue-shifted offset filtering, inverted signals are generated at the
output of the MRRs and the signal polarity needs to be restored.
For this reason, all the drop ports of theMRRs are waveguide in-
terconnected to arrays of tunable DIs whose notches are used for
CW carrier suppression and to obtain noninverted operation. Fi-
nally, the data streams exit the AOWCplatform imprinted on the
CW wavelengths. The integration of the MRRs and DIs on the
same chip implies that no in-line amplification is required, en-
abling the scaling of this scheme in terms of throughput, power
consumption, and footprint.

III. DEVICE FABRICATION

The key components for the 4 40 Gb/s AOWC is the ar-
rayed structure of MRRs and DIs. The whole integrated circuit
was fabricated using TriPleX waveguide technology developed
by LioniX, Enschede, The Netherlands. Stoichiometric silicon
nitride (Si N ) fabrication using low-pressure chemical vapor
deposition (LPCVD) processing is widely used in integrated
optics because of its large refractive index 2.0 that en-
ables very compact devices. By combining an additional mate-
rial having a large compressive stress, such as LPCVD silicon
dioxide (SiO ), the total stress of the composite layer stack is
strongly reduced. This alternating LPCVD layer stack concept
can result in a rectangular channel waveguide structure with
outstanding waveguiding characteristics and strong polarizing
effects. This waveguide structure is formed by a cross section
of silicon nitride (Si N ) filled with and encapsulated by SiO ,
as shown in Fig. 2(a). The channel geometry approximates a
“hollow core” system, since it consists of a low-index “inner
core” of SiO “cladded” with the high-index “outer core” of
Si N . Modal characteristics depend only upon the geometry of
the structure, as all composing materials are LPCVD end prod-
ucts with very reproducible characteristics. Thewhole process is
CMOS compatible and very cost effective since only one pho-
tolithographical step is required for waveguide definition and
guarantees a propagation loss of dB/cm [18].
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Fig. 3. (a) Characterization setup. (b) MRR wavelength tuning. (c) Tuning
versus power.

The fabrication process starts with thermal oxidation of a 100
mm diameter silicon wafer to form the lower cladding. Then,
Si N and SiO are deposited by LPCVD and the photolitho-
graphical step is performed together with reactive ion etching.
After a second LPCVD deposition of Si N , local removal of
the slab nitride layer is performed, followed by the top-cladding
deposition. Local removal of the nitride, although more diffi-
cult in fabrication, results in a box-shaped structure reducing
the modal birefringence and, also important, the absence of slab
waveguides. The last two steps are LPCVD and plasma-en-
hanced chemical vapor deposition based oxide depositions to
form the upper cladding. After the top-cladding depositions, the
top surface is planarized by chemical mechanical polishing to
yield a flat surface. A thin film of chromium and gold is de-
posited by electron-beam evaporation. These films are subse-
quently patterned with a two-step lithographical process using
standard contact lithography and wet chemical etching to fab-
ricate the microheater structures. The gold is etched near the
ring resonators to locally increase the resistance. The silicon
of the waveguide at the position of the heater was underetched
reducing the leakage of heat to the silicon substrate. Although
tuning speed was limited, tuning power was decreased to 80
mW due to the concentration of the heat in the waveguide. The
box-shaped waveguide had a 450 450 nm SiO core with a
170 nm Si N shell, allowing MRR bend radii down to 55 m.
Fig. 2(c) illustrates the final TriPleX chip and the section that
was chosen for the 4 40 Gb/s AOWC experiment. Fig. 2(d)
shows part of the mask design with a set of pads for MRR and
DI wavelength tuning.

Fig. 4. Transfer functions of WC1–WC4. The power has been normalized to
the transmission peak in the spectrum.

TABLE I
OPTIMUM OPTICAL AND ELECTRICAL POWER LEVELS FOR WCS

IV. DEVICE CHARACTERIZATION

Fig. 3(a) depicts the experimental setup for the characteriza-
tion of the TriPleX chip. Amplified spontaneous emission from
a spectrally flat light source was used for capturing theMRR and
DI responses. A single polarization state was achieved utilizing
a polarizer with over than 30 dB polarization extinction ratio.
The light was coupled into the chip through a PM-lensed fiber,
and the spectral response was acquired by an optical spectrum
analyzer with a resolution of 10 pm. Fig. 3(b) shows the tuning
of the MRR response when both ring heaters are enabled. With
60 mW/ring, wavelength tuning of 1 nm was achieved. Fig. 3(c)
illustrates the individual heater tuning with respect to the elec-
trical power.
Fig. 4 depicts the transfer functions of all the AOWCs. The

free spectral range (FSR) of MRRs and DIs was 4 nm, while
the 3 dB bandwidth was 60 GHz. An extinction ratio of dB
was achieved when MRRs and DIs were tuned properly. Due to
fabrication tolerances, there was a slight difference between the
FSRs of MRRs and DIs. This resulted in a nonuniform spectral
response, which could be optimized with the heating elements
at the operating wavelength inside the full C-band.

V. EXPERIMENT

The 40 Gb/s data signal was generated by time interleaving
the pulses from a 2.2 ps, 10 GHz, tunable, mode-locked laser
modulated with a pseudorandom bit sequence and tuned
to a different transmission peak for each of the MRR/DI se-
quences (see Fig. 5). A pigtailed commercially available SOA
with a gain recovery time of 30 ps was used for cross-gain
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Fig. 5. Experimental setup.

Fig. 6. Eye diagrams of (a) B2B signal, (b), (d), (f), (h) inverted signals at the
output of WC1–WC4, and (c), (e), (g), (i) noninverted signals at the outputs of
WC1–WC4, respectively.

and -phase modulation, and four laser diodes for providing the
CW signals. The chip coupling was performed through stan-
dard single-mode lensed fibers. The outputs of the four WC
signals at 40 Gb/s were evaluated by bit-error-rate (BER) mea-
surements after demultiplexing to 10 Gb/s using an electroab-
sorptionmodulator. Table I shows the optimum operating power
levels used for each WC. Deviations in the optical power mea-
surements are primarily due to the SOA spectral profile and
different fiber-to-waveguide coupling losses. The average elec-
trical power required to tune the filter elements of each WC was
72 mW, or 24 mW per heater.
The eye diagram of the incoming data stream is depicted in

Fig. 6(a). By detuning the transmission peaks of the second-
order ring resonators 0.2 nm (blue-shifted) off the CW carriers,
inverted operation is achieved at the outputs of the four WCs as
illustrated in Fig. 6(b), (d), (f), and (h). With further tuning (0.3
nm blue-shifted), the inverted signal peaks approach close to

Fig. 7. BER curves of (a) B2B andWC1, (b) B2B andWC2, (c) B2B andWC3,
and (d) B2B and WC4.

the notches of the DIs and as a consequence the signal polarity
is restored. Fig. 6(c), (e), (g), and (i) shows these noninverted
signals, verifying the SOA recovery acceleration and the effec-
tive increase of system operational speed. Initial and converted
wavelengths for the four parallel WCs were 1) 1554 to 1558
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Fig. 8. Inverted and noninverted spectrums for (a) WC1, (b) WC2, (c) WC3,
and (d) WC4 [P(dB m)- (nm)].

nm, 2) 1541 to 1561 nm, 3) 1544 to 1556 nm, and 4) 1543 to
1549 nm.
Fig. 7 depicts the BER curves obtained for the back-to-back

and WC signals. Error-free operation was measured for all
the demultiplexed, wavelength converted signals, with power
penalties of less than 3 dB. No signal amplification was re-
quired between the SOA and the TriPleX chip, and the power
penalty could be further reduced with fiber-to-chip coupling
with tapered waveguide facets. Fig. 8 shows the optical spec-
trums recorded for all the four individual WCs. In the left-hand
side, the inverted wavelength converted spectrums are depicted
where slight blue-chirp filtering has been performed. On the
right-hand side, noninverted spectrums are represented where
carriers have been sufficiently suppressed by the DI notches.

VI. CONCLUSION

We have demonstrated the fabrication and testing of the first
TriPleXwavelength conversion platform that offers 4 40 Gb/s
throughput on a total footprint of 8.75 mm . The TriPleX chip
consumes mW of electrical power per heater element to
tune each of the 12 optical components. By tuning the arrays
of second-order MRRs and DIs, we have presented 40 Gb/s all-
optical wavelength conversion with power penalties of less than
3 dB.
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